Volume 5, Issue 4, August 2017, Page: 40-48
Synthesis of La:Co:TiO2 Nanocomposite and Photocatalytic Degradation of Tartaric Acid in Water at Various Parameters
Azad Kumar, Department of Applied Chemistry, School for Physical Sciences Babasaheb Bhimrao Ambedkar University, Lucknow, India
Gajanan Pandey, Department of Applied Chemistry, School for Physical Sciences Babasaheb Bhimrao Ambedkar University, Lucknow, India
Received: Jul. 4, 2017;       Accepted: Jul. 13, 2017;       Published: Aug. 1, 2017
DOI: 10.11648/j.nano.20170504.11      View  1987      Downloads  167
In this study, nanocomposites of La:Co:TiO2 was prepared by the co-precipitation method. The alcoholic route of synthesis was adopted here which was gives greenish homogeneous powder of La:Co:TiO2. The material was found in the nanodiamension by the SEM analysis. The rutile and anatase both phases were present in XRD analysis of the synthesized materials. The particle size was found 24 and 82 nm in case of La:Co:TiO2 and pure Titania respectively. The surface area of Titania and La:Co:TiO2 nanocomposites were found 6.4 and 43.2 m2/g. The band gap energy of Titania and La:Co:TiO2 nanocomposites were found 3.2 eV and 3.0 eV respectively. The photodegradation of Tartaric Acid was investigate at different parameters such as temperature, concentration, pH of reaction mixture, dose of photocatalyst and time of illumination of UV-Visible light. The photodegradation of Tartaric Acid occurs 60-80% in presence of Cobalt lanthanum modified Titania and in presence of neat Titania only 20-40% degradation was observed. It is found that photodegradation of Tartaric Acid follow the first order mechanism and its rate constant is become doubled when temperature is rise by 10°C.
Titania, Nanocomposite, Photocatalyst, Photodegradation
To cite this article
Azad Kumar, Gajanan Pandey, Synthesis of La:Co:TiO2 Nanocomposite and Photocatalytic Degradation of Tartaric Acid in Water at Various Parameters, American Journal of Nano Research and Applications. Vol. 5, No. 4, 2017, pp. 40-48. doi: 10.11648/j.nano.20170504.11
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Jacoby W. A., Maness P. C., Wolfrum E. J., Blake D. M., Fennell J. A., Environ. Sci., Tech., 32 (1998) 2650.
Hoffmann M. R., Martin S. T., Choi W. Y., Bahnemann D. W., Chem. Rev., 95 (1995) 69.
Fujishima A., Hashimoto K., Watanabe T., BKC, Tokyo, 1999.
Ziolli R. L., Jardim W. F., J. Photochem. Photobiol. A Chem. 147 (2002) 205.
Berger T., Sterrer M., Diwald O., Knozinger E., Panayotov D., Thompson T. L., Yates J. T., J. Phys,. Chem., B 109 (2005) 6061.
Szczepankiewicz S. H., Moss J. A., Hoffmann M. R., J., Phys., Chem., B 106 (2002) 2922.
Arabatzis I. M., Stergiopoulos T., Bernard M.C., Labou D., Neophytides S. G., Falaras P., Appl. Catal. B Environ. 42 (2003) 187.
Arabatzis I. M., Stergiopoulos T., Andreeva D., Kitova S., Neophytides S. G., Falaras P., J. Catal. 220 (2003) 127.
Hu C., Tang Y. H., Jiang Z., Hao Z. P., Tang H. X., Wong P. K., Appl. Catal. A Gen. 253 (2003) 389.
Keleher J., Bashant J., Heldt N., Johnson L., Li Y.Z., World J. Microbiol. Biotechnol. 18 (2002) 133.
Wang C., Wang T. M., Zheng S. K., Physica E 14 (2002) 242.
Sun B., Vorontsov A. V., Smirniotis P. G., Langmuir 19 (2003) 3151.
Li F. B., Li X. Z., Chemosphere 48 (2002) 1103.
Vamathevan V., Amal R., Beydoun D., Low G., McEvoy S., J. Photochem. Photobiol. A Chem. 148 (2002) 233.
Paunesku T., Rajh T., Wiederrecht G., Maser J., Vogt S., Stojicevic N., Protic M., Lai B., Oryhon J., Thurnauer M., Woloschak G., Nat. Mater. 2 (2003) 343.
Rajh, J. M., Nedeljkovic L. X., Chen O., Poluektov M. C., Thurnauer A., J., Phys., Chem. B 103 (1999) 3515.
Gratzel M., Nature 414 (2001) 338.
Brune A., Jeong G., Liddell P. A., Sotomura T., Moore T. A., Moore A. L., Gust D., Langmuir 20 (2004) 8366.
Krishna V., Pumprueg S., Lee S. H., Zhao J., Sigmund W., Koopman B., Moudgil B. M., Process Saf., Environ. Prot. 83 (2005) 393.
Lee S. H., Pumprueg S., Moudgil B., Sigmund W., Colloids Surf. B Biointerfaces 40 (2005) 93.
Krishna V., Noguchi N., Koopman B., Moudgil B., J., of Colloid and Interface Science 304 (2006) 166–171)
Zhang. L, kanki. T, Sano.n, Toyoda. A, J., Solar Energy70 (4) (2001): 331-337.
Song.K. H, Park. M. K, Kwon. V. T, Lee. K. W, Chang. W. J, Lee, W. I, Chem. mater, 13, (2001) 2349.
Ameta. S. C., Punjabi. P. B, Rao. P, and Singhle. B.,: J. Indian Chem Soc.,77, (2000) 157-160.
Ollis. D. E and Al. Ekabi. H, Photocatalytic Purification and Treatment of Water and air, Elsevier, Amsterdam (1993)
Gratzel. M, Research opportunities in Photochemical science, Dept. of Energy, 34 (6), (1996), 1221-1230.
Ohtani. B., Ogawa. Y., and NIshimoto. S,: J. Phys. Chem. B, 101, (1997) 3746
Cao. F, Oskam. G. J., Meyer. S., and Searson. P. C,: J. Phy. Chem. B, 100, (1996) 17021.
Armelao. L, Barreca. D, Bertapelle. M, Balttaro. G, Sada. C, and Tondello. E, thin solid films, 442, (2003), 48.
Balamurugan. B, Mehta. B. R, Thin solid films, 396, (2001), 90.
Fujishima, A. (2002), “Nanotechnology and Photocatalysis: Important Science and Technology for Comfortable Atmosphere,” presented at the Shanghai International Nanotechnology Cooperation Symposium (SINCS 2002), Shanghai, China, 2002.
Beydoun D. and Amal R, J. Phys. Chem. B,104, 18 (2000 ) 4387–4396
Kaneko, M. and Okura, I. (2002), Photocatalysis: Science and Technology (Springer, Berlin, 2002).
Mills A., Jishun W. Photomineralisation of 4-chlorophenol sensitised by TiO2 thin films. J. of Photochemistry and Photobiology A: Chem. 118, (1998) 53-63
Draper R. B. and Fox Marye Anne,Langmuir, 6, (1990) 1396-1402
Jaeger. C. D.: Bard. A. J. J., Am., Chem,. Soc.102.(1980) 5435.
Bickley, R. I., Munuera, G., and Stone, F. S., J. Catal, 31, (1973) 398
Shiraishi, F. and Kawanishi, C., J. Phys. Chem., A 108, (2004) 10491
Richard C., Bosquet F, PilichowskiJ, J. of Photochemistry and Photobiology A: Chem.108 (1997) 45-49
Rupa A V, Divakar D, Sivakumar T. Catal Lett,132 (2009) 259–267
Mahshid S., Askari M., Sasani Ghamsari M., Journal of Materials Processing Technology 189 (2007) 296–300.
Marcela Kralova, Irina Levchuk, Vit Kasparek, Mika Sillanpaa, Jaroslav Cihlar, Chinese Journal of Catalysis, 36, 10, (2015) 1679-1684
Cullity, B. D., Stock, S. R. (2001), Elements of X-Ray Diffraction, Third Edition, and New Jersey: Prentice-Hall, Inc.
Albetran H., O'Connor B. H., Low I. M., Materials & Design, 92 (2016) 480-485
Nair R. R., Raj J. A., Devi S., Materials Today: Proceedings, 3 (2016) 1643-1649
Koh P. W., Hatta M. H. M., Ong S. T., Yuliati L., Lee S. L., Journal of Photochemistry and Photobiology A: Chemistry, 332 (2017) 215-223
Alamgir A., Khan W., Ahmad S., Hassan M. M., Naqvi A. H., Optical Materials, 38 (2014) 278-285
Tang W., Qiu K., Zhang P., Yuan X., App. Surface Science, 362 (2016) 545-550
Chen D., Ray A. K., Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal. B: Environ. 23 (1999) 143–157.
Freundlich H., J. Phys. Chem. 57 (1907) 385–470.
Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc.40 (1918) 1361–1403.
R. W. Matthews, Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide, J. Catal. 111 (1988) 264–272.
Vautier M., Guillard C., Herrmann J. M., Photocatalytic degradation of dyes in water: Case study of Indigo and of Indigo Carmine, J. Catal. 201 (2001) 46–59.
Ono Y., T. Rachi , T. Okuda, M. Yokouchi, Y. Kamimot, A. Nakajima, K. Okada, Journal of Physics and Chemistry of Solids 73 (2012) 343–349.
Browse journals by subject