Volume 2, Issue 5, September 2014, Page: 98-103
Bio-Synthesis of Magnetite Nanoparticles by Bacteria
Mohamed Abdul-Aziz Elblbesy, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Saudi Arabia, Tabuk, Saudi Arabia
Adel Kamel Madbouly, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
Thamer Abed-Alhaleem Hamdan, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Saudi Arabia, Tabuk, Saudi Arabia
Received: Oct. 11, 2014;       Accepted: Oct. 27, 2014;       Published: Oct. 30, 2014
DOI: 10.11648/j.nano.20140205.12      View  3205      Downloads  353
A promising avenue of research in materials science is to follow the strategies used by Mother Nature to fabricate ornate hierarchical structures as exemplified by organisms such as diatoms, sponges and magnetotactic bacteria. Some of the strategies used in the biological world to create functional inorganic materials may well have practical implications in the world of nanomaterials. The aim of our work is to examine the synthetic of magnetite nanoparticles under different conditions to show the influence in magnetic properties of magnetite nanoparticles. Magnetospirillum strain AMB-1 was used in this study in order to produce magnetite nanoparticles. Magnetite nanoparticles of average size~47 nm were obtained. The magnetic properties of magnetite nanoparticles under different incubation temperature were examined and a small influence in magnetic properties of magnetite nanoparticles was indicated.
Magnetospirillum, Magnetite Nanoparticles, Temperatures, Magnetic Properties
To cite this article
Mohamed Abdul-Aziz Elblbesy, Adel Kamel Madbouly, Thamer Abed-Alhaleem Hamdan, Bio-Synthesis of Magnetite Nanoparticles by Bacteria, American Journal of Nano Research and Applications. Vol. 2, No. 5, 2014, pp. 98-103. doi: 10.11648/j.nano.20140205.12
Fendler JH. (1998) Nanoparticles and nanostructured films: preparation, characterization and applications. JohnWiley & Son
Bruins RM, Kapil S, Oehme SW. (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf, 45(3),198-207.
Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., Silver, S. & Trevors, J. T. (1997) Metal microbe interactions: contemporary approaches. Adv Microb Physiol, 38 ,177-243.
Bao, C., Jin, M., Lu, R., Zhang, T. and Zhao, Y. Y. (2003) Preparation of Au nanoparticles in the presence of low generational poly(am idoamine) dendrimer with surface hydroxyl groups. Mat. Chem. Phys, 81, 160–165.
Y.Roh, R.J.Lauf, A.D.McMillan, C.Zhang, C.J.Ra wn, J.Bai, wn, and T.J.Phelps. (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun. 118, 529-534.
T.Hyeon. (2003) Chemical synthesis of magnetic nanoparticles. Chem. Commun. 8, 927-934.
E. Petrovsky, M.D.Alcala, J.M.Criado, T.Grygar , A.Kapicka, and J.Subrt,(200) Magnetic properties of magnetite prepared by ball-milling of hematite with iron. J. Magnet. Magnet. Mat. 210, 257 -273.
Gu H, Xu K, Xu C, Xu B. (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb), 7,(9),941-949.
Tamer U, Gundogdu Y, Boyaci IH. Pekmez K. (2010) Synthesis of magnetic core-shell Fe3O4-Au, nanoparticles for biomolecule immobilization and detection. J Nanopart Res, 12, 1187-1196.
Chang JH, Kang KH., Choi J., Jeong YK. (2008) High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles. Superlattices and Microstructures. 44(4-5), 442-448.
Huang YF, Wang YF, Yan XP. (2010) Amine functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol, 15,44(20),7908-7913.
Dong H, Huang J, Koepsel RR, Ye P, Russell AJ, Matyjaszewski K. (2011) Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules, 11,12(4),1305-11.
Meng X, Seton HC, Lu le T, Prior IA, Thanh NT, Song B. (2011) Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection, Nanoscale. Mar, 3(3), 977-984.
Laurent S, Dutz S, Häfeli UO, Mahmoudi M. (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci, 10,166(1-2),8-23.
Li J. H., Benzerara K., Bernard S. and Beyssac O. (2013) The link between biomineralization and fossilization of bacteria: insights from field and experimental studies. Chem. Geol, 359, 49–69.
Larese-Casanova P., Haderlein S. B. and Kappler A. (2010) Biomineralization of lepidocrocite and goethite by nitratereducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochim. Cosmochim. Acta, 74, 3721–3734.
Miot J., Recham N., Larcher D., Guyot F., Brest J. and Tarascon J. M. (2014) Biomineralized a-Fe2O3: texture and electrochemical reaction with Li. Energy Environ. Sci. 7, 451–460.
Bazylinski DA, Frankel RB, Jannasch HW. (1988). Anaerobic Magnetite Production by a Marine, Magnetotactic Bacterium. Nature, 334, 518-519
Sakaguchi T, Burgess JG, Matsunaga T. (1993) Magnetite formation by a sulphate-reducing bacterium. Nature, 365:47-49.
Vali H, Weiss B, Li Y-L, Sears SK, Kim SS, Kirschvink JL. (2004) Formation of tabular single domain magnetite induced by Geobacter metallireducens GS-15. Proc. Nati. Acad. Sci. 101, 16121-16126.
Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M. (2005) Prasad and M. Sastry, Bacterial Aerobic Synthesis of Nanocrystalline Magnetite. J Am Chem Soc, 127,9326-9327.
Umesh Kumar, Ashvini Shete, Arti Harle, Oksana Kasyutich, W. Schwarzacher, Archana Pundle And Pankaj Poddar. (2008) Extracellular Bacterial Synthesis of Protein Functionalized Ferromagnetic Co3O4 Nanocrystals and Imaging of Self-Organization of Bacterial Cells under Stress after Exposure to Metal Ions. Chemistry of Materials,20,1484 –1491.
A. H. Morr and K. Haneda. (1988) Magnetic structure of small NiFe2O4 particles. J Appl Phys, 52, 4258-4296.
E1-Hilo, M., K. O'Grady, and R.W. Chantrell (1992)Susceptibility phenomena in a fine particle system, I., Concentration dependence of the peak. J. Magn. Magn. Mater., 114, 295-306.
G. A. Held, G. Grinstein, H. Doyle, Shouheng Sun, and C. B. Murray.(2001) Competing interactions in dispersions of superparamagnetic nanoparticles. Phys Rev ,64:012408.
Bozorth RM. Ferromagnetism. New York, NY: D. Van Nostrand Company, Inc.; 1951
Lesli-Pelecky DL, Rieke RD. (1996) Magnetic properties of nanostructured materials. Chem Mater, 8,1770–1783.
Browse journals by subject